Displaying 901 – 920 of 4583

Showing per page

Classifications and characterizations of Baire-1 functions

Persephone Kiriakouli (1998)

Commentationes Mathematicae Universitatis Carolinae

Kechris and Louveau in [5] classified the bounded Baire-1 functions, which are defined on a compact metric space K , to the subclasses 1 ξ ( K ) , ξ < ω 1 . In [8], for every ordinal ξ < ω 1 we define a new type of convergence for sequences of real-valued functions ( ξ -uniformly pointwise) which is between uniform and pointwise convergence. In this paper using this type of convergence we obtain a classification of pointwise convergent sequences of continuous real-valued functions defined on a compact metric space K , and...

Closed universal subspaces of spaces of infinitely differentiable functions

Stéphane Charpentier, Quentin Menet, Augustin Mouze (2014)

Annales de l’institut Fourier

We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace...

Commuting functions and simultaneous Abel equations

W. Jarczyk, K. Łoskot, M. C. Zdun (1994)

Annales Polonici Mathematici

The system of Abel equations α(ft(x)) = α(x) + λ(t), t ∈ T, is studied under the general assumption that f t are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.

Compact and weakly compact homomorphisms between algebras of differentiable functions.

Manuel González, Joaquín M. Gutiérrez (1990)

Extracta Mathematicae

Many authors have recently studied compact and weakly compact homomorphisms between function algebras. Among them, Lindström and Llavona [2] treat weakly compact continuous homomorphisms between algebras of type C(T) when T is a completely regular Hausdorff space.Llavona asked wether the results in [2] are valid in the case of algebras of differentiable functions on Banach spaces. The purpose of this note is to give an affirmative answer to this question, by proving that weakly compact homomorphisms...

Compact operators and integral equations in the ℋ𝒦 space

Varayu Boonpogkrong (2022)

Czechoslovak Mathematical Journal

The space ℋ𝒦 of Henstock-Kurzweil integrable functions on [ a , b ] is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . In this paper, on each Fréchet space ℋ𝒦 ( X ) , an F -norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the ℋ𝒦 ( X ) space. It is known that every control-convergent sequence in the ℋ𝒦 space always belongs to a ℋ𝒦 ( X ) space for some X . We illustrate how to apply results...

Comparative Analysis of Viscoelastic Models Involving Fractional Derivatives of Different Orders

Rossikhin, Yuriy, Shitikova, Marina (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 74D05, 26A33In this paper, a comparative analysis of the models involving fractional derivatives of di®erent orders is given. Such models of viscoelastic materials are widely used in various problems of mechanics and rheology. Rabotnov's hereditarily elastic rheological model is considered in detail. It is shown that this model is equivalent to the rheological model involving fractional derivatives in the stress and strain with the orders proportional to a certain positive...

Currently displaying 901 – 920 of 4583