On the -primitive
Given a finite family of cliquish functions, , we can find a Lebesgue function such that is Darboux and quasi-continuous for every . This theorem is a generalization both of the theorem by H. W. Pu H. H. Pu and of the theorem by Z. Grande.
Classes of functions continuous in various senses, in particular -continuous, -continuous, feeblz continuous a.o., and relations between the classes, are studied.
Let C(f), Q(f), E(f) and A(f) be the sets of all continuity, quasicontinuity, upper and lower quasicontinuity and cliquishness points of a real function f: X → ℝ, respectively. The triplets (C(f),Q(f),A(f)), (C(f),E(f),A(f) and (Q(f),E(f),A(f)are characterized for functions defined on Baire metric spaces without isolated points.
The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces are constructed, leading to a notion of pointwise regularity with respect to E; the case corresponds to the usual Hölder regularity, and...
We characterize the family of quotients of peripherally continuous functions. Moreover, we study cardinal invariants related to quotients in the case of peripherally continuous functions and the complement of this family.
We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented. THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets. THEOREM. In the Ellentuck topology on , is a proper subset of the hereditary ideal associated with (s). We construct an example in the Ellentuck topology of a set which is...