Previous Page 3

Displaying 41 – 52 of 52

Showing per page

On the σ -finiteness of a variational measure

Diana Caponetti (2003)

Mathematica Bohemica

The σ -finiteness of a variational measure, generated by a real valued function, is proved whenever it is σ -finite on all Borel sets that are negligible with respect to a σ -finite variational measure generated by a continuous function.

On Whitney pairs

Marianna Csörnyei (1999)

Fundamenta Mathematicae

A simple arc ϕ is said to be a Whitney arc if there exists a non-constant function f such that    l i m x x 0 ( | f ( x ) - f ( x 0 ) | ) / ( | ϕ ( x ) - ϕ ( x 0 ) | ) = 0 for every x 0 . G. Petruska raised the question whether there exists a simple arc ϕ for which every subarc is a Whitney arc, but for which there is no parametrization satisfying    l i m t t 0 ( | t - t 0 | ) / ( | ϕ ( t ) - ϕ ( t 0 ) | ) = 0 . We answer this question partially, and study the structural properties of possible monotone, strictly monotone and VBG* functions f and associated Whitney arcs.

Currently displaying 41 – 52 of 52

Previous Page 3