Page 1 Next

Displaying 1 – 20 of 53

Showing per page

On extending C k functions from an open set to with applications

Walter D. Burgess, Robert M. Raphael (2023)

Czechoslovak Mathematical Journal

For k { } and U open in , let C k ( U ) be the ring of real valued functions on U with the first k derivatives continuous. It is shown that for f C k ( U ) there is g C ( ) with U coz g and h C k ( ) with f g | U = h | U . The function f and its k derivatives are not assumed to be bounded on U . The function g is constructed using splines based on the Mollifier function. Some consequences about the ring C k ( ) are deduced from this, in particular that Q cl ( C k ( ) ) = Q ( C k ( ) ) .

On generalized Peano and Peano derivatives

H. Fejzić (1993)

Fundamenta Mathematicae

A function F is said to have a generalized Peano derivative at x if F is continuous in a neighborhood of x and if there exists a positive integer q such that a qth primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the latter is called the generalized nth Peano derivative of F at x and denoted by F [ n ] ( x ) . We show that generalized Peano derivatives belong to the class [Δ’]. Also we show that they are path derivatives with a nonporous system of paths satisfying the I.I.C....

Currently displaying 1 – 20 of 53

Page 1 Next