O hmotě trojosého ellipsoidu
Page 1 Next
Karel Zahradník (1879)
Časopis pro pěstování mathematiky a fysiky
Luděk Zajíček (2000)
Pokroky matematiky, fyziky a astronomie
Maria Mastalerz-Wawrzyńczak (1977)
Fundamenta Mathematicae
Walter Benz (1983)
Mathematische Zeitschrift
Riedel, T., Sablik, Maciej (2000)
International Journal of Mathematics and Mathematical Sciences
S. L. Segal (1976)
Colloquium Mathematicae
Manfred Knebusch (1976)
Mathematische Zeitschrift
Luděk Zajíček (1981)
Commentationes Mathematicae Universitatis Carolinae
N. K. Kundu (1973)
Colloquium Mathematicae
L. Zajíček (1974)
Fundamenta Mathematicae
Michael J. Evans (1974)
Colloquium Mathematicae
Powa̧zka, Zbigniew, Rose, Michael (1994)
Mathematica Pannonica
A. van Rooij, W. Schikhof (1988)
Fundamenta Mathematicae
A. van Rooij (1988)
Fundamenta Mathematicae
N.C. Manna (1970)
Monatshefte für Mathematik
S. N. Mukhopadhyay (1972)
Colloquium Mathematicae
Walter D. Burgess, Robert M. Raphael (2023)
Czechoslovak Mathematical Journal
For and open in , let be the ring of real valued functions on with the first derivatives continuous. It is shown that for there is with and with . The function and its derivatives are not assumed to be bounded on . The function is constructed using splines based on the Mollifier function. Some consequences about the ring are deduced from this, in particular that .
Aliasghar Alikhani-Koopaei (2002)
Mathematica Slovaca
S. Mukhopadhyay, D. Sain (1988)
Fundamenta Mathematicae
H. Fejzić (1993)
Fundamenta Mathematicae
A function F is said to have a generalized Peano derivative at x if F is continuous in a neighborhood of x and if there exists a positive integer q such that a qth primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the latter is called the generalized nth Peano derivative of F at x and denoted by . We show that generalized Peano derivatives belong to the class [Δ’]. Also we show that they are path derivatives with a nonporous system of paths satisfying the I.I.C....
Page 1 Next