Page 1

Displaying 1 – 8 of 8

Showing per page

Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral

Erik Talvila (2005)

Czechoslovak Mathematical Journal

When a real-valued function of one variable is approximated by its n th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue p -norms in cases where f ( n ) or f ( n + 1 ) are Henstock-Kurzweil integrable. When the only assumption is that f ( n ) is Henstock-Kurzweil integrable then a modified form of the n th degree Taylor polynomial is used. When the only assumption is that f ( n ) C 0 then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.

Extending Peano derivatives

Hajrudin Fejzić, Jan Mařík, Clifford E. Weil (1994)

Mathematica Bohemica

Let H [ 0 , 1 ] be a closed set, k a positive integer and f a function defined on H so that the k -th Peano derivative relative to H exists. The major result of this paper is that if H has finite Denjoy index, then f has an extension, F , to [ 0 , 1 ] which is k times Peano differentiable on [ 0 , 1 ] with f i = F i on H for i = 1 , 2 , ... , k .

Extending Peano derivatives: necessary and sufficient conditions

Hans Volkmer (1999)

Fundamenta Mathematicae

The paper treats functions which are defined on closed subsets of [0,1] and which are k times Peano differentiable. A necessary and sufficient condition is given for the existence of a k times Peano differentiable extension of such a function to [0,1]. Several applications of the result are presented. In particular, functions defined on symmetric perfect sets are studied.

Currently displaying 1 – 8 of 8

Page 1