Displaying 101 – 120 of 188

Showing per page

Operator-valued functions of bounded semivariation and convolutions

Štefan Schwabik (2001)

Mathematica Bohemica

The abstract Perron-Stieltjes integral in the Kurzweil-Henstock sense given via integral sums is used for defining convolutions of Banach space valued functions. Basic facts concerning integration are preseted, the properties of Stieltjes convolutions are studied and applied to obtain resolvents for renewal type Stieltjes convolution equations.

Orthogonally additive functionals on B V

Khaing Aye Khaing, Peng Yee Lee (2004)

Mathematica Bohemica

In this paper we give a representation theorem for the orthogonally additive functionals on the space B V in terms of a non-linear integral of the Henstock-Kurzweil-Stieltjes type.

Pointwise limits for sequences of orbital integrals

Claire Anantharaman-Delaroche (2010)

Colloquium Mathematicae

In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...

Question d'examen

A. Allaretti (1875)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Riemann Integral of Functions from ℝ into Real Banach Space

Keiko Narita, Noboru Endou, Yasunari Shidama (2013)

Formalized Mathematics

In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers. In addition we proved some theorems about the...

Riemann Integral of Functions from R into n -dimensional Real Normed Space

Keiichi Miyajima, Artur Korniłowicz, Yasunari Shidama (2012)

Formalized Mathematics

In this article, we define the Riemann integral on functions R into n-dimensional real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to the wider range. Our method refers to the [21].

Riemann Integral of Functions from R into R n

Keiichi Miyajima, Yasunari Shidama (2009)

Formalized Mathematics

In this article, we define the Riemann Integral of functions from R into Rn, and prove the linearity of this operator. The presented method is based on [21].

Riemann Integral of Functions from R into Real Normed Space

Keiichi Miyajima, Takahiro Kato, Yasunari Shidama (2011)

Formalized Mathematics

In this article, we define the Riemann integral on functions from R into real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to a wider range of functions. The proof method follows the [16].

Riemann Integral of Functions R into C

Keiichi Miyajima, Takahiro Kato, Yasunari Shidama (2010)

Formalized Mathematics

In this article, we define the Riemann Integral on functions R into C and proof the linearity of this operator. Especially, the Riemann integral of complex functions is constituted by the redefinition about the Riemann sum of complex numbers. Our method refers to the [19].

Riemann-Stieltjes Integral

Keiko Narita, Kazuhisa Nakasho, Yasunari Shidama (2016)

Formalized Mathematics

In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties. In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described...

Some applications of Kurzweil-Henstock integration

Rudolf Výborný (1993)

Mathematica Bohemica

Applications of ideal from Kurzweil-Henstock integration to elementary analysis on 𝐑 , mean value theorems for vector valued functions, l’Hospital rule, theorems of Taylor type and path independence of line integrals are discussed.

Currently displaying 101 – 120 of 188