Displaying 681 – 700 of 2145

Showing per page

Functions of Baire class one

Denny H. Leung, Wee-Kee Tang (2003)

Fundamenta Mathematicae

Let K be a compact metric space. A real-valued function on K is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. We study two well known ordinal indices of Baire-1 functions, the oscillation index β and the convergence index γ. It is shown that these two indices are fully compatible in the following sense: a Baire-1 function f satisfies β ( f ) ω ξ · ω ξ for some countable ordinals ξ₁ and ξ₂ if and only if there exists a sequence (fₙ) of Baire-1 functions...

Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak (2017)

Czechoslovak Mathematical Journal

We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition

Yuriy Povstenko (2014)

Open Mathematics

The central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective...

Gauge integrals and series

Charles W. Swartz (2004)

Mathematica Bohemica

This note contains a simple example which does clearly indicate the differences in the Henstock-Kurzweil, McShane and strong McShane integrals for Banach space valued functions.

General integration and extensions. I

Štefan Schwabik (2010)

Czechoslovak Mathematical Journal

A general concept of integral is presented in the form given by S. Saks in his famous book Theory of the Integral. A special subclass of integrals is introduced in such a way that the classical integrals (Newton, Riemann, Lebesgue, Perron, Kurzweil-Henstock...) belong to it. A general approach to extensions is presented. The Cauchy and Harnack extensions are introduced for general integrals. The general results give, as a specimen, the Kurzweil-Henstock integration in the form of the extension of...

General integration and extensions.II

Štefan Schwabik (2010)

Czechoslovak Mathematical Journal

This work is a continuation of the paper (Š. Schwabik: General integration and extensions I, Czechoslovak Math. J. 60 (2010), 961–981). Two new general extensions are introduced and studied in the class 𝔗 of general integrals. The new extensions lead to approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition of the Denjoy’s special integral by the method of successive approximation,...

Generalised regular variation of arbitrary order

Edward Omey, Johan Segers (2010)

Banach Center Publications

Let f be a measurable, real function defined in a neighbourhood of infinity. The function f is said to be of generalised regular variation if there exist functions h ≢ 0 and g > 0 such that f(xt) - f(t) = h(x)g(t) + o(g(t)) as t → ∞ for all x ∈ (0,∞). Zooming in on the remainder term o(g(t)) eventually leads to the relation f(xt) - f(t) = h₁(x)g₁(t) + ⋯ + hₙ(x)gₙ(t) + o(gₙ(t)), each g i being of smaller order than its predecessor g i - 1 . The function f is said to be generalised regularly varying of...

Currently displaying 681 – 700 of 2145