On convergence for the -integral
Supriya Pal, Dilip Kumar Ganguly, Lee Peng Yee (2005)
Mathematica Slovaca
Akgün, Ramazan, Kokilashvili, Vakhtang (2011)
Banach Journal of Mathematical Analysis [electronic only]
J. Smital (1976)
Aequationes mathematicae
J. Smital (1976)
Aequationes mathematicae
Kazimierz Nikodem (1980)
Aequationes mathematicae
Jiří Jarník (1973)
Časopis pro pěstování matematiky
Jack Ceder (1976)
Fundamenta Mathematicae
J. Smital (1989)
Aequationes mathematicae
Kirill Naralenkov (2010)
Czechoslovak Mathematical Journal
In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined.
José Gámez, José Mendoza (1998)
Studia Mathematica
The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function which is not Pettis integrable on any subinterval in [a,b], while belongs to for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord...
Powa̧zka, Zbigniew, Rose, Michael (1994)
Mathematica Pannonica
A. van Rooij, W. Schikhof (1988)
Fundamenta Mathematicae
A. van Rooij (1988)
Fundamenta Mathematicae
Ľubica Holá (1989)
Mathematica Slovaca
M. Morayne (1984)
Colloquium Mathematicae
Michał Morayne (1987)
Colloquium Mathematicae
Michał Morayne (1987)
Colloquium Mathematicae
Lupulescu, Vasile (2002)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
N.C. Manna (1970)
Monatshefte für Mathematik
S. N. Mukhopadhyay (1972)
Colloquium Mathematicae