Displaying 1741 – 1760 of 2163

Showing per page

Summation equations with sign changing kernels and applications to discrete fractional boundary value problems

Christopher S. Goodrich (2016)

Commentationes Mathematicae Universitatis Carolinae

We consider the summation equation, for t [ μ - 2 , μ + b ] μ - 2 , y ( t ) = γ 1 ( t ) H 1 i = 1 n a i y ξ i + γ 2 ( t ) H 2 i = 1 m b i y ζ i + λ s = 0 b G ( t , s ) f ( s + μ - 1 , y ( s + μ - 1 ) ) in the case where the map ( t , s ) G ( t , s ) may change sign; here μ ( 1 , 2 ] is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that G is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions H 1 and H 2 . Finally, as an application of the abstract existence result,...

Summation processes viewed from the Fourier properties of continuous unimodular functions on the circle

Jean-Pierre Kahane (2011)

Banach Center Publications

The main purpose of this article is to give a new method and new results on a very old topic: the comparison of the Riemann processes of summation (R,κ) with other summation processes. The motivation comes from the study of continuous unimodular functions on the circle, their Fourier series and their winding numbers. My oral presentation in Poznań at the JM-100 conference exposed the ways by which this study was developed since the fundamental work of Brézis and Nirenberg on the topological degree...

Sums of Darboux and continuous functions

Juris Steprans (1995)

Fundamenta Mathematicae

It is shown that for every Darboux function F there is a non-constant continuous function f such that F + f is still Darboux. It is shown to be consistent - the model used is iterated Sacks forcing - that for every Darboux function F there is a nowhere constant continuous function f such that F + f is still Darboux. This answers questions raised in [5] where it is shown that in various models of set theory there are universally bad Darboux functions, Darboux functions whose sum with any nowhere...

Superposition operators and functions of bounded p-variation.

Gérard Bourdaud, Massimo Lanza de Cristoforis, Winfried Sickel (2006)

Revista Matemática Iberoamericana

We characterize the set of all functions f of R to itself such that the associated superposition operator Tf: g → f º g maps the class BVp1(R) into itself. Here BVp1(R), 1 ≤ p < ∞, denotes the set of primitives of functions of bounded p-variation, endowed with a suitable norm. It turns out that such an operator is always bounded and sublinear. Also, consequences for the boundedness of superposition operators defined on Besov spaces Bp,qs are discussed.

Sur deux espaces de fonctions non dérivables

Robert Cauty (1992)

Fundamenta Mathematicae

Let D (resp. D*) be the subspace of C = C([0,1], R) consisting of differentiable functions (resp. of functions differentiable at the one point at least). We give topological characterizations of the pairs (C, D) and (C, D*) and use them to give some examples of spaces homeomorphic to CDor to CD*.

Currently displaying 1741 – 1760 of 2163