Displaying 461 – 480 of 959

Showing per page

On representations of real analytic functions by monogenic functions

Hongfen Yuan (2019)

Czechoslovak Mathematical Journal

Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.

On Sakaguchi functions.

Yang, Ding-Gong, Liu, Jin-Lin (2003)

International Journal of Mathematics and Mathematical Sciences

On semi-typically real functions

Leopold Koczan, Katarzyna Trąbka-Więcław (2009)

Annales UMCS, Mathematica

Suppose that A is the family of all functions that are analytic in the unit disk Δ and normalized by the condition [...] For a given A ⊂ A let us consider the following classes (subclasses of A): [...] and [...] where [...] and S consists of all univalent members of A.In this paper we investigate the case A = τ, where τ denotes the class of all semi-typically real functions, i.e. [...] We study relations between these classes. Furthermore, we find for them sets of variability of initial coeffcients,...

On soluble groups of automorphisms of nonorientable Klein surfaces

G. Gromadzki (1992)

Fundamenta Mathematicae

We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.

Currently displaying 461 – 480 of 959