Generalized function fractional integration operators in some classes of analytic functions
Let f be an analytic function on the unit disk . We define a generalized Hilbert-type operator by , where a and b are non-negative real numbers. In particular, for a = b = β, becomes the generalized Hilbert operator , and β = 0 gives the classical Hilbert operator . In this article, we find conditions on a and b such that is bounded on Dirichlet-type spaces , 0 < p < 2, and on Bergman spaces , 2 < p < ∞. Also we find an upper bound for the norm of the operator . These generalize...
We study a generalized interpolation problem for the space H∞(B2) of bounded homomorphic functions in the ball B2. A sequence Z = {zn} of B2 is an interpolating sequence of order 1 if for all sequence of values wn satisfying conditions of order 1 (that is discrete derivatives in the pseudohyperbolic metric are bounded) there exists a function f ∈ H∞(B2) such that f(zn) = wn. These sequences are characterized as unions of 3 free interpolating sequences for H∞(B2) such that all triplets of Z made...
We establish the basic properties of the class of generalized simply connected John domains.
∗ Partially supported by grant No. 433/94 NSF of the Ministry of Education and Science of the Republic of Bulgaria 1991 Mathematics Subject Classification:30C45We consider functions of the type, j=1 ... n, F(z) = z^p ∏ [ fj (z)/(z^p) ] ^αj where fj are p-valent functions starlike of order αj and aj are complex numbers. The problem we solve is to find conditions for the centre and the radius of the disc {z : |z − ω| < r}, contained in the unit disc {z : |z| < 1} and containing the origin,...
We consider functions of the type , where are real numbers and are -strongly close-to-starlike functions of order . We look for conditions on the center and radius of the disk (a,r) = z:|z-a| < r, |a| < r ≤ 1 - |a|, ensuring that F((a,r)) is a domain starlike with respect to the origin.
For various -spaces (1 ≤ p < ∞) we investigate the minimum number of complex-valued functions needed to generate an algebra dense in the space. The results depend crucially on the regularity imposed on the generators. For μ a positive regular Borel measure on a compact metric space there always exists a single bounded measurable function that generates an algebra dense in . For M a Riemannian manifold-with-boundary of finite volume there always exists a single continuous function that generates...
We examine the boundary behaviour of the generic power series with coefficients chosen from a fixed bounded set in the sense of Baire category. Notably, we prove that for any open subset of the unit disk with a nonreal boundary point on the unit circle, is a dense set of . As it is demonstrated, this conclusion does not necessarily hold for arbitrary open sets accumulating to the unit circle. To complement these results, a characterization of coefficient sets having this property is given....
In this paper we study the 5 families of genus 3 compact Riemann surfaces which are normal coverings of the Riemann sphere branched over 4 points from very different aspects: their moduli spaces, the uniform Belyi functions that factorize through the quotient by the automorphism groups and the Weierstrass points of the non hyperelliptic families.