Generalization of certain subclasses of analytic functions.
In this paper a new method which is a generalization of the Ehrlich-Kjurkchiev method is developed. The method allows to find simultaneously all roots of the algebraic equation in the case when the roots are supposed to be multiple with known multiplicities. The offered generalization does not demand calculation of derivatives of order higher than first simultaneously keeping quaternary rate of convergence which makes this method suitable for application from practical point of view.
Fueter's result (see [6,8]) on inducing quaternionic regular functions from holomorphic functions of a complex variable is extended to Euclidean spaces . It is then proved to be consistent with M. Sce's generalization for being odd integers [6].
Some results related to extremal problems with free poles on radial systems are generalized. They are obtained by applying the known methods of geometric function theory of complex variable. Sufficiently good numerical results for γ are obtained.
The motivation of this paper is to study the uniqueness problems of meromorphic functions concerning differential polynomials that share a small function. The results of the paper improve and generalize the recent results due to Fengrong Zhang and Linlin Wu [13]. We also solve an open problem as posed in the last section of [13].
We establish some uniqueness results for meromorphic functions when two nonlinear differential polynomials and share a nonzero polynomial with certain degree and our results improve and generalize some recent results in Y.-H. Cao, X.-B. Zhang (2012). Also we exhibit two examples to show that the conditions used in the results are sharp.
Motivated by some recent results by Li and Stević, in this paper we prove that a two-parameter family of Cesàro averaging operators is bounded on the Dirichlet spaces . We also give a short and direct proof of boundedness of on the Hardy space for 1 < p < ∞.
We prove a dimension compression estimate for homeomorphic mappings of exponentially integrable distortion via a modulus of continuity result by D. Herron and P. Koskela [Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259]. The essential sharpness of our estimate is demonstrated by an example.