Interpolation and Sampling for Generalized Bergman Spaces on finite Riemann surfaces.
This paper deals with an interpolation problem in the open unit disc of the complex plane. We characterize the sequences in a Stolz angle of , verifying that the bounded sequences are interpolated on them by a certain class of not bounded holomorphic functions on , but very close to the bounded ones. We prove that these interpolating sequences are also uniformly separated, as in the case of the interpolation by bounded holomorphic functions.
We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of integer-valued entire functions. Our proof rests on a very general interpolation result for entire functions.
The aim of the paper is to get an estimation of the error of the general interpolation rule for functions which are real valued on the interval , , have a holomorphic extension on the unit circle and are quadratic integrable on the boundary of it. The obtained estimate does not depend on the derivatives of the function to be interpolated. The optimal interpolation formula with mutually different nodes is constructed and an error estimate as well as the rate of convergence are obtained. The general...
Let be the set of all holomorphic functions on the domain Two domains and are called Hadamard-isomorphic if and are isomorphic algebras with respect to the Hadamard product. Our main result states that two admissible domains are Hadamard-isomorphic if and only if they are equal.
Jordan analytic curves which are invariant under rational functions are studied.
The lattice of invariant subspaces of several Banach spaces of analytic functions on the unit disk, for example the Bergman spaces and the Dirichlet spaces, have been studied recently. A natural question is to what extent these investigations carry over to analogously defined spaces on an annulus. We consider this question in the context of general Banach spaces of analytic functions on finitely connected domains Ω. The main result reads as follows: Assume that B is a Banach space of analytic functions...
Let be a hyperbolic Riemann surface, a harmonic measure supported on the Martin boundary of , and the subalgebra of consisting of the boundary values of bounded analytic functions on . This paper gives a complete classification of the closed -submodules of , (weakly closed, if , when is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy...