Démonstration nouvelle d'un théorème fondamental sur les suites de fonctions monogènes
We prove that if A is a basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, then the periodic points in the boundary of A are dense in this boundary. To prove this in the non-simply connected or parabolic situations we prove a more abstract, geometric coding trees version.
2000 Mathematics Subject Classification: 41A10, 30E10, 41A65.In this paper we consider an L^2 type space of scalar functions L^2 M, A (R u iR) which can be, in particular, the usual L^2 space of scalar functions on R u iR. We find conditions for density of polynomials in this space using a connection with the L^2 space of square-integrable matrix-valued functions on R with respect to a non-negative Hermitian matrix measure. The completness of L^2 M, A (R u iR ) is also established.
We prove some conditions on a complex sequence for the existence of universal functions with respect to sequences of certain derivative and antiderivative operators related to it. These operators are defined on the space of holomorphic functions in a complex domain. Conditions for the equicontinuity of those sequences are also studied. The conditions depend upon the size of the domain.
For , the boundary of the unit ball in , let . If then we call the exceptional set for . In this note we give a tool for describing such sets. Moreover we prove that if is a and subset of the projective -dimensional space then there exists a holomorphic function in the unit ball so that .
Let be a closed polar subset of a domain in . We give a complete description of the pluripolar hull of the graph of a holomorphic function defined on . To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.
On étudie la dimension moyenne de l’espace de courbes -Brody à valeurs dans deux surfaces complexes : d’abord pour des surfaces de Hopf, et ensuite pour privé d’une droite. On montre dans le premier cas que la dimension moyenne est nulle via une borne sur la croissance des fonctions holomorphes faisant apparaître le lemme de la dérivée logarithmique. Pour montrer la positivité dans le deuxième exemple, on relève de la droite à son complémentaire un espace de courbes de Brody de dimension moyenne...