Displaying 101 – 120 of 176

Showing per page

Ordre, convergence et sommabilité de produits de séries de Dirichlet

Jean-Pierre Kahane, Hervé Queffélec (1997)

Annales de l'institut Fourier

L’article donne des réponses optimales ou presque optimales aux questions suivantes, qui remontent à Stieltjes, Landau et Bohr, et concernent des séries de Dirichlet A j = n = 1 a ( j , n ) n - s ( j = 1 , 2 ...

Régularité et suprarégularité pour une famille de germes dirichlétiens (par rapport à un support de référence)

Maurice Blambert, Jean Siméon (1969)

Annales de l'institut Fourier

Définitions et propriétés des notions nouvelles de demi-plans, droites et abscisses de régularité et de suprarégularité pour une famille de germes dirichlétiens, par rapport à un support commun de référence. Conditions suffisantes (du type de Landau-Fekete) d’égalité de ces abscisses et expressions algorithmiques de majorants. Relations de dépendance (du type de V. Bernstein) entre les différentes abscisses considérées d’une famille donnée. Extensions de résultats classiques relatifs à la famille...

Some Banach spaces of Dirichlet series

Maxime Bailleul, Pascal Lefèvre (2015)

Studia Mathematica

The Hardy spaces of Dirichlet series, denoted by p (p ≥ 1), have been studied by Hedenmalm et al. (1997) when p = 2 and by Bayart (2002) in the general case. In this paper we study some L p -generalizations of spaces of Dirichlet series, particularly two families of Bergman spaces, denoted p and p . Each could appear as a “natural” way to generalize the classical case of the unit disk. We recover classical properties of spaces of analytic functions: boundedness of point evaluation, embeddings between...

Sur une inégalité fondamentale et les singularités d’une fonction analytique définie par un élément L C -dirichlétien

Maurice Blambert, R. Parvatham (1983)

Annales de l'institut Fourier

Utilisant une fonction entière g B [ 1 , T ] et les propriétés relatives à son diagramme indicateur et à son diagramme conjugué, on établit une inégalité fondamentale liée au terme général d’un élément L C -dirichlétien Σ P n ( s ) exp ( - λ n / s ) où les λ n sont complexes et où les P n ( s ) sont des polynômes tayloriens. Ensuite on établit des propriétés de convergence et on utilise l’inégalité fondamentale pour obtenir certaines propriétés liées au prolongement analytique de la fonction définie par l’élément L C -dirichlétien dans un ouvert connexe...

The Bohr inequality for ordinary Dirichlet series

R. Balasubramanian, B. Calado, H. Queffélec (2006)

Studia Mathematica

We extend to the setting of Dirichlet series previous results of H. Bohr for Taylor series in one variable, themselves generalized by V. I. Paulsen, G. Popescu and D. Singh or extended to several variables by L. Aizenberg, R. P. Boas and D. Khavinson. We show in particular that, if f ( s ) = n = 1 a n - s with | | f | | : = s u p s > 0 | f ( s ) | < , then n = 1 | a | n - 2 | | f | | and even slightly better, and n = 1 | a | n - 1 / 2 C | | f | | , C being an absolute constant.

The growth of Dirichlet series

Zhendong Gu, Daochun Sun (2012)

Czechoslovak Mathematical Journal

We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong's...

Currently displaying 101 – 120 of 176