Displaying 61 – 80 of 90

Showing per page

Random walks on co-compact fuchsian groups

Sébastien Gouëzel, Steven P. Lalley (2013)

Annales scientifiques de l'École Normale Supérieure

It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence R . It is also shown that Ancona’s inequalities extend to  R , and therefore that the Martin boundary for  R -potentials coincides with the natural geometric boundary S 1 , and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, p n ( x , y ) C x , y R - n n - 3 / 2 .

Reducibility and unitary equivalence for a class of multiplication operators on the Dirichlet space

Yong Chen, Young Joo Lee, Tao Yu (2014)

Studia Mathematica

We consider the reducibility and unitary equivalence of multiplication operators on the Dirichlet space. We first characterize reducibility of a multiplication operator induced by a finite Blaschke product and, as an application, we show that a multiplication operator induced by a Blaschke product with two zeros is reducible only in an obvious case. Also, we prove that a multiplication operator induced by a multiplier ϕ is unitarily equivalent to a weighted shift of multiplicity 2 if and only if...

Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces

Marco Biroli, Umberto Mosco (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.

Some Dirichlet spaces obtained by subordinate reflected diffusions.

Niels Jacob, René L. Schilling (1999)

Revista Matemática Iberoamericana

In this paper we want to show how well-known results from the theory of (regular) elliptic boundary value problems, function spaces and interpolation, subordination in the sense of Bochner and Dirichlet forms can be combined and how one can thus get some new aspects in each of these fields.

Sur la représentation des formes de Dirichlet

Guy Allain (1975)

Annales de l'institut Fourier

On montre qu’une forme de Dirichlet est décomposable de manière unique en deux formes intégrales et une forme locale. On indique l’expression de cette partie locale dans un cas régulier.

Sur la théorie du potentiel dans les domaines de John.

Alano Ancona (2007)

Publicacions Matemàtiques

Using rather elementary and direct methods, we first recover and add on some results of Aikawa-Hirata-Lundh about the Martin boundary of a John domain. In particular we answer a question raised by these authors. Some applications are given and the case of more general second order elliptic operators is also investigated. In the last parts of the paper two potential theoretic results are shown in the framework of uniform domains or the framework of hyperbolic manifolds.

Currently displaying 61 – 80 of 90