On non-isomorphism of Banach spaces of holomorphic functions
Si studiano «combinazioni convesse complesse» per mappe olomorfe dal disco unità di in un dominio convesso limitato di uno spazio di Banach complesso , e se ne traggono conseguenze sul carattere globale della non unicità per le geodetiche complesse di .
It is shown that an infinite sequence of polynomial mappings of several complex variables, with suitable growth restrictions, determines a filled-in Julia set which is pluriregular. Such sets depend continuously and analytically on the generating sequences, in the sense of pluripotential theory and the theory of set-valued analytic functions, respectively.
Let K be a compact set in ℂ, f a function analytic in ℂ̅∖K vanishing at ∞. Let be its Taylor expansion at ∞, and the sequence of Hankel determinants. The classical Pólya inequality says that , where d(K) is the transfinite diameter of K. Goluzin has shown that for some class of compacta this inequality is sharp. We provide here a sharpness result for the multivariate analog of Pólya’s inequality, considered by the second author in Math. USSR Sbornik 25 (1975), 350-364.
In this survey we shall tour the area of multidimensional complex analysis which centers around ∂̅-problems (i.e., the Cauchy-Riemann equations) on pseudoconvex domains. Along the way we shall highlight some of the classical milestones as well as more recent landmarks, and we shall discuss some of the major open problems and conjectures. For the sake of simplicity we will only consider domains in ; intriguing phenomena occur already in the simple setting of (Euclidean) convex domains. We will not...
We prove that continuity properties of bounded analytic functions in bounded smoothly bounded pseudoconvex domains in two-dimensional affine space are determined by their behaviour near the Shilov boundary. Namely, if the function has continuous extension to an open subset of the boundary containing the Shilov boundary it extends continuously to the whole boundary. If it is e.g. Hölder continuous on such a boundary set, it is Hölder continuous on the closure of the domain. The statements may fail...
Let be a complex manifold of dimension at least which has an exhaustion function whose Levi form has at each point at least strictly positive eigenvalues. We construct proper holomorphic discs in through any given point and in any given direction.