Satake Compactification and Extension of Holomorphic Mappings.
We present the notion of scattering monodromy for a two degree of freedom hyperbolic oscillator and apply this idea to determine the Picard-Lefschetz monodromy of the isolated singular point of a quadratic function of two complex variables.
We characterize the Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains in terms of the Berezin transform.
We establish the Schwarz Reflection Principle for -complex discs attached to a real analytic -totally real submanifold of an almost complex manifold with real analytic . We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in -classes.
The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is similar to its definition for complex manifolds. We study the question of completeness of some domains for this metric. In particular, we study the completeness of the complement of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of basic facts in the theory of pseudo-holomorphic discs.
The structure of the section space of a real analytic vector bundle on a real analytic manifold X is studied. This is used to improve a result of Grothendieck and Poly on the zero spaces of elliptic operators and to extend a result of Domański and the author on the non-existence of bases to the present case.