Maass Operators and Eisenstein Series.
We show that if X, Y are smooth, compact k-dimensional submanifolds of ℝⁿ and 2k+2 ≤ n, then each diffeomorphism ϕ: X → Y can be extended to a diffeomorphism Φ: ℝⁿ → ℝⁿ which is tame (to be defined in this paper). Moreover, if X, Y are real analytic manifolds and the mapping ϕ is analytic, then we can choose Φ to be also analytic. We extend this result to some interesting categories of closed (not necessarily compact) subsets of ℝⁿ, namely, to the category of Nash submanifolds...
The main result of this paper is the following: if a compact subset E of is UPC in the direction of a vector then E has the Markov property in the direction of v. We present a method which permits us to generalize as well as to improve an earlier result of Pawłucki and Pleśniak [PP1].
Consider the normed space of all polynomials of N complex variables, where || || a norm is such that the mapping is continuous, with g being a fixed polynomial. It is shown that the Markov type inequality , j = 1,...,N, , with positive constants M and m is equivalent to the inequality , , with some positive constants M’ and m’. A similar equivalence result is obtained for derivatives of a fixed order k ≥ 2, which can be more specifically formulated in the language of normed algebras. In...
Electro-muscular disruption (EMD) devices such as TASER M26 and X26 have been used as a less-than-lethal weapon. Such EMD devices shoot a pair of darts toward an intended target to generate an incapacitating electrical shock. In the use of the EMD device, there have been controversial questions about its safety and effectiveness. To address these questions, we need to investigate the distribution of the current density J inside the target produced by the EMD device. One approach is to develop a computational...
Nous nous donnons, dans l’anneau des germes de fonctions holomorphes à l’origine de , une fonction définissant une singularité isolée et nous nous intéressons à l’équation , lorsque la fonction est donnée. Nous introduisons les multiplicités d’intersection relatives de et le long des branches de et nous étudions les solutions à l’aide de ces valuations. Grâce aux résultats ainsi démontrés, nous construisons explicitement une équation fonctionnelle vérifiée par .
We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.
In this paper we deal with several characterizations of the Hardy-Sobolev spaces in the unit ball of Cn, that is, spaces of holomorphic functions in the ball whose derivatives up to a certain order belong to the classical Hardy spaces. Some of our characterizations are in terms of maximal functions, area functions or Littlewood-Paley functions involving only complex-tangential derivatives. A special case of our results is a characterization of Hp itself involving only complex-tangential derivatives....
In our earlier paper [CKZ], we proved that any plurisubharmonic function on a bounded hyperconvex domain in with zero boundary values in a quite general sense, admits a plurisubharmonic subextension to a larger hyperconvex domain. Here we study important properties of its maximal subextension and give informations on its Monge-Ampère measure. More generally, given a quasi-plurisubharmonic function on a given quasi-hyperconvex domain of a compact Kähler manifold , with well defined Monge-Ampère...
We generalize some criteria of boundedness of -index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of th partial derivative by lower order partial derivatives (analogue of Hayman’s theorem).