On the branches of a complex space.
Let be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.
In this paper we develop a method to compute the Burns-Epstein invariant of a spherical CR homology sphere, up to an integer, from its holonomy representation. As an application, we give a formula for the Burns-Epstein invariant, modulo an integer, of a spherical CR structure on a Seifert fibered homology sphere in terms of its holonomy representation.
We review some previous results about the Calabi-Yau equation on the Kodaira-Thurston manifold equipped with an invariant almost-Kähler structure and assuming the volume form T2-invariant. In particular, we observe that under some restrictions the problem is reduced to aMonge-Ampère equation by using the ansatz ˜~ω = Ω− dJdu + da, where u is a T2-invariant function and a is a 1-form depending on u. Furthermore, we extend our analysis to non-invariant almost-complex structures by considering some...
We study the integral representation of solutions to the Cauchy problem for a differential equation with constant coefficients. The Cauchy data and the right-hand of the equation are given by entire functions on a complex hyperplane of . The Borel transformation of power series and residue theory are used as the main methods of investigation.
To a pair of a Lie group and an open elliptic convex cone in its Lie algebra one associates a complex semigroup which permits an action of by biholomorphic mappings. In the case where is a vector space is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain is Stein is and only if it is of the form , with convex, that each holomorphic function on extends to the smallest biinvariant Stein domain containing ,...
Let be a real symmetric space and the corresponding decomposition of the Lie algebra. To each open -invariant domain consisting of real ad-diagonalizable elements, we associate a complex manifold which is a curved analog of a tube domain with base , and we have a natural action of by holomorphic mappings. We show that is a Stein manifold if and only if is convex, that the envelope of holomorphy is schlicht and that -invariant plurisubharmonic functions correspond to convex -invariant...