Teoremi di approssimazione per gli spazi analitici reali coerenti non immergibili in
We prove the analyticity of -concave sets of locally finite Hausdorff -measure in a -dimensional complex space. We apply it to give a removability criterion for meromorphic maps with values in -complete spaces.
The purpose of this paper is to calculate the asymptotics of the Ray-Singer analytic torsion associated with the -th symmetric power of a holomorphic Hermitian positive vector bundle when tends to . We thus extend our previous results on positive line bundles.
We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.