On the functors Ext¹(E,F) for Fréchet spaces
We associate to a given polynomial map from to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.
We study the behavior of the pluricomplex Green function on a bounded hyperconvex domain D that admits a smooth plurisubharmonic exhaustion function ψ such that 1/|ψ| is integrable near the boundary of D, and moreover satisfies the estimate at points close enough to the boundary with constants C,C’ > 0 and 0 < α < 1. Furthermore, we obtain a Hopf lemma for such a function ψ. Finally, we prove a lower bound on the Bergman distance on D.
The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the -dimensional torus, its identity component is a simple group. For fibered manifolds, for manifolds admitting special semi-free actions and for 2- or 3-dimensional manifolds with nontrivial actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.
This paper contains a new approach to a proof of the Hartogs extension theorem and its generalisation. The proof bases only on one complex variable methods.