Versal deformations for two-dimensional pseudoconvex manifolds
We extend to compact Kaehler and Fujiki manifolds the theorem of F. Bogomolov, on vanishing of the space of holomorphic p-forms with values in a line bundle whose dual L is numerically effective, for the degrees p less than the numerical dimension of L.
We give criteria of finite determinacy for the volume and multiplicities. Given an analytic set described by {v = 0}, we prove that the log-analytic expansion of the volume of the intersection of the set and a "little ball" is determined by that of the set defined by the Taylor expansion of v up to a certain order if the mapping v has an isolated singularity at the origin. We also compare the cardinalities of finite fibers of projections restricted to such a set.