Displaying 101 – 120 of 607

Showing per page

A generalization of Radó's theorem

E. M. Chirka (2003)

Annales Polonici Mathematici

If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.

A geometric approach to the Jacobian Conjecture in ℂ²

Ludwik M. Drużkowski (1991)

Annales Polonici Mathematici

We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set g - 1 ( 0 ) (resp. f - 1 ( 0 ) ), then (f,g) is bijective.

A geometry on the space of probabilities (II). Projective spaces and exponential families.

Henryk Gzyl, Lázaro Recht (2006)

Revista Matemática Iberoamericana

In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities (I). The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a...

Currently displaying 101 – 120 of 607