Weighted anisotropic integral representations of holomorphic functions in the unit ball of .
This paper characterizes the boundedness and compactness of weighted composition operators between a weighted-type space and the Hardy space on the unit ball of ℂⁿ.
Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator on H() is defined by . We investigate the boundedness and compactness of induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.