Page 1

Displaying 1 – 7 of 7

Showing per page

Equivalent characterizations of Bloch functions

Zhangjian Hu (1994)

Colloquium Mathematicae

In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].

Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids

Romaric Tytgat (2015)

Czechoslovak Mathematical Journal

Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes f ¯ tels que l’opérateur de Hankel H f ¯ sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten 𝒮 p quand p tend vers 1 et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. Abstract....

Essential norm of the difference of composition operators on Bloch space

Ke-Ben Yang, Ze-Hua Zhou (2010)

Czechoslovak Mathematical Journal

Let ϕ and ψ be holomorphic self-maps of the unit disk, and denote by C ϕ , C ψ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators C ϕ - C ψ from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.

Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions

Vyacheslav Zakharyuta (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Let K be a compact set in an open set D on a Stein manifold Ω of dimension n . We denote by H D the Banach space of all bounded and analytic in D functions endowed with the uniform norm and by A K D a compact subset of the space C K consisted of all restrictions of functions from the unit ball 𝔹 H D . In 1950ies Kolmogorov posed a problem: does ε A K D τ ln 1 ε n + 1 , ε 0 , where ε A K D is the ε -entropy of the compact A K D . We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters...

Currently displaying 1 – 7 of 7

Page 1