Equivalent characterizations of Bloch functions
In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].
In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].
Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes tels que l’opérateur de Hankel sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten quand tend vers et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. Abstract....
Let and be holomorphic self-maps of the unit disk, and denote by , the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.
Let be a compact set in an open set on a Stein manifold of dimension . We denote by the Banach space of all bounded and analytic in functions endowed with the uniform norm and by a compact subset of the space consisted of all restrictions of functions from the unit ball . In 1950ies Kolmogorov posed a problem: doeswhere is the -entropy of the compact . We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters...