Hankel operators and weak factorization for Hardy-Orlicz spaces
We study the holomorphic Hardy-Orlicz spaces , where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in ℂⁿ. The function Φ is in particular such that for some p > 0. We develop maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω). As a consequence, we characterize those Hankel operators which are bounded from into ¹(Ω).