Loading [MathJax]/extensions/MathZoom.js
Let D be a bounded strictly pseudoconvex domain of with smooth boundary. We consider the weighted mixed-norm spaces of holomorphic functions with norm . We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces and we give results about real and complex interpolation between them. We apply these results to prove that is the intersection of a Besov space with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm...
Besov spaces of holomorphic functions in tubes over cones have been recently defined by Békollé et al. In this paper we show that Besov p-seminorms are invariant under conformal transformations of the domain when n/r is an integer, at least in the range 2-r/n < p ≤ ∞.
We show that T is a surjective multiplicative (but not necessarily linear) isometry from the Smirnov class on the open unit disk, the ball, or the polydisk onto itself, if and only if there exists a holomorphic automorphism Φ such that T(f)=f ○ Φ for every class element f or T(f) = for every class element f, where the automorphism Φ is a unitary transformation in the case of the ball and Φ(z 1, ..., z n) = for |λ j| = 1, 1 ≤ j ≤ n, and (i 1; ..., i n)is some permutation of the integers from...
Currently displaying 1 –
3 of
3