Displaying 181 – 200 of 403

Showing per page

Local analytic rings

Jorge C. Zilber (1990)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Michael's theorem for Lipschitz cells in o-minimal structures

Małgorzata Czapla, Wiesław Pawłucki (2016)

Annales Polonici Mathematici

A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a common constant) is proven. Uniform equi-LCⁿ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.

Multiplicity and the Łojasiewicz exponent

S. Spodzieja (2000)

Annales Polonici Mathematici

We give a formula for the multiplicity of a holomorphic mapping f : n Ω m , m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.

Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods

W. Pleśniak (2006)

Banach Center Publications

We give a state-of-the-art survey of investigations concerning multivariate polynomial inequalities. A satisfactory theory of such inequalities has been developed due to applications of both the Gabrielov-Hironaka-Łojasiewicz subanalytic geometry and pluripotential methods based on the complex Monge-Ampère operator. Such an approach permits one to study various inequalities for polynomials restricted not only to nice (nonpluripolar) compact subsets of ℝⁿ or ℂⁿ but also their versions for pieces...

Noethérianité de certaines algèbres de fonctions analytiques et applications

Abdelhafed Elkhadiri, Mouttaki Hlal (2000)

Annales Polonici Mathematici

Let M n be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider S K = f H ( M ) | f ( x ) 0 f o r a l l x K ; S K is a multiplicative subset of H ( M ) . Let S K - 1 H ( M ) be the localization of H(M) with respect to S K . In this paper we prove, first, that S K - 1 H ( M ) is a regular ring (hence noetherian) and use this result in two situations:    1) For each open subset Ω n , we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, f x , is algebraic...

Currently displaying 181 – 200 of 403