Displaying 241 – 260 of 403

Showing per page

Ouverts analytiques d'une courbe algébrique en géométrie rigide

Qing Liu (1987)

Annales de l'institut Fourier

Nous étudions les espaces analytiques rigides de dimension 1, réguliers, de genre fini sur un corps valué complet k . Nous montrons qu’un tel espace X admet une réduction préstable. Si k est maximalement complet, X se plonge dans une courbe algébrique (analytifiée). On donne aussi une caractérisation des espaces analytiques qui sont le complémentaire d’une partie compacte dans une courbe algébrique.

Points réguliers d'un sous-analytique

Krzysztof Kurdyka (1988)

Annales de l'institut Fourier

On donne une autre démonstration (sans désingularisation de Hironaka) du théorème de Tamm, qui dit que la partie régulière d’un sous-analytique est sous-analytique. En plus, on montre que pour chaque fonction f : U R de classe SUBB (“sous-analytique à l’infini”), où U est un sous-ensemble ouvert et borné dans R ( n , il existe un entier k N tel que f est analytique dans x U si et seulement si f est de classe G k ( k -fois différentiable au sens de Gateaux) dans un voisinage de x .

Preparation theorems for matrix valued functions

Nils Dencker (1993)

Annales de l'institut Fourier

We generalize the Malgrange preparation theorem to matrix valued functions F ( t , x ) C ( R × R n ) satisfying the condition that t det F ( t , 0 ) vanishes to finite order at t = 0 . Then we can factor F ( t , x ) = C ( t , x ) P ( t , x ) near (0,0), where C ( t , x ) C is inversible and P ( t , x ) is polynomial function of t depending C on x . The preparation is (essentially) unique, up to functions vanishing to infinite order at x = 0 , if we impose some additional conditions on P ( t , x ) . We also have a generalization of the division theorem, and analytic versions generalizing the Weierstrass preparation...

Quantifier elimination in quasianalytic structures via non-standard analysis

Krzysztof Jan Nowak (2015)

Annales Polonici Mathematici

The paper is a continuation of an earlier one where we developed a theory of active and non-active infinitesimals and intended to establish quantifier elimination in quasianalytic structures. That article, however, did not attain full generality, which refers to one of its results, namely the theorem on an active infinitesimal, playing an essential role in our non-standard analysis. The general case was covered in our subsequent preprint, which constitutes a basis for the approach presented here....

Quantifier elimination, valuation property and preparation theorem in quasianalytic geometry via transformation to normal crossings

Krzysztof Jan Nowak (2009)

Annales Polonici Mathematici

This paper investigates the geometry of the expansion Q of the real field ℝ by restricted quasianalytic functions. The main purpose is to establish quantifier elimination, description of definable functions by terms, the valuation property and preparation theorem (in the sense of Parusiński-Lion-Rolin). To this end, we study non-standard models of the universal diagram T of Q in the language ℒ augmented by the names of rational powers. Our approach makes no appeal to the Weierstrass preparation...

Currently displaying 241 – 260 of 403