On 'Type' Conditions for Generic Real Submanifolds of Cn.
Nous étudions les espaces analytiques rigides de dimension 1, réguliers, de genre fini sur un corps valué complet . Nous montrons qu’un tel espace admet une réduction préstable. Si est maximalement complet, se plonge dans une courbe algébrique (analytifiée). On donne aussi une caractérisation des espaces analytiques qui sont le complémentaire d’une partie compacte dans une courbe algébrique.
On donne une autre démonstration (sans désingularisation de Hironaka) du théorème de Tamm, qui dit que la partie régulière d’un sous-analytique est sous-analytique. En plus, on montre que pour chaque fonction de classe SUBB (“sous-analytique à l’infini”), où est un sous-ensemble ouvert et borné dans , il existe un entier tel que est analytique dans si et seulement si est de classe (-fois différentiable au sens de Gateaux) dans un voisinage de .
We give a new proof of Kurdyka-Tamm's theorem on the analytic locus of a subanalytic function.
We generalize the Malgrange preparation theorem to matrix valued functions satisfying the condition that vanishes to finite order at . Then we can factor near (0,0), where is inversible and is polynomial function of depending on . The preparation is (essentially) unique, up to functions vanishing to infinite order at , if we impose some additional conditions on . We also have a generalization of the division theorem, and analytic versions generalizing the Weierstrass preparation...
We consider complex analytic sets with proper intersection. We find their regular separation exponent using basic notions of intersection multiplicity theory.
The paper is a continuation of an earlier one where we developed a theory of active and non-active infinitesimals and intended to establish quantifier elimination in quasianalytic structures. That article, however, did not attain full generality, which refers to one of its results, namely the theorem on an active infinitesimal, playing an essential role in our non-standard analysis. The general case was covered in our subsequent preprint, which constitutes a basis for the approach presented here....
This paper investigates the geometry of the expansion of the real field ℝ by restricted quasianalytic functions. The main purpose is to establish quantifier elimination, description of definable functions by terms, the valuation property and preparation theorem (in the sense of Parusiński-Lion-Rolin). To this end, we study non-standard models of the universal diagram T of in the language ℒ augmented by the names of rational powers. Our approach makes no appeal to the Weierstrass preparation...