Displaying 61 – 80 of 347

Showing per page

Complex Plateau problem in non-Kähler manifolds

S. Ivashkovich (1998)

Annales Polonici Mathematici

We consider the complex Plateau problem for strongly pseudoconvex contours in non-Kähler manifolds. We give a necessary and sufficient condition for the existence of solution in the class of manifolds carrying pluriclosed metric forms and propose a conjecture for the general case.

Composition operators: N α to the Bloch space to Q β

Jie Xiao (2000)

Studia Mathematica

Let N α ,B and Qβ be the weighted Nevanlinna space, the Bloch space and the Q space, respectively. Note that B and Q β are Möbius invariant, but N α is not. We characterize, in function-theoretic terms, when the composition operator C ϕ f = f ϕ induced by an analytic self-map ϕ of the unit disk defines an operator C ϕ : N α B , B Q β , N α Q β which is bounded resp. compact.

Continuation of holomorphic functions with growth conditions and some of its applications

Alexander V. Abanin, Pham Trong Tien (2010)

Studia Mathematica

We prove a generalization of the well-known Hörmander theorem on continuation of holomorphic functions with growth conditions from complex planes in p into the whole p . We apply this result to construct special families of entire functions playing an important role in convolution equations, interpolation and extension of infinitely differentiable functions from closed sets. These families, in their turn, are used to study optimal or canonical, in a certain sense, weight sequences defining inductive...

Continuation of holomorphic solutions to convolution equations in complex domains

Ryuichi Ishimura, Jun-ichi Okada, Yasunori Okada (2000)

Annales Polonici Mathematici

For an analytic functional S on n , we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in n . We determine the directions in which every solution can be continued analytically, by using the characteristic set.

Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group

Do Duc Thai, Dinh Huy Hoang (1999)

Annales Polonici Mathematici

We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection π 1 : V Γ is finite and proper, then R V : O ( Γ × G ) I m R V O ( V ) has a right inverse

Contribution du cup-produit de la fibre de Milnor aux pôles de | f | 2 λ

Daniel Barlet (1984)

Annales de l'institut Fourier

Nous montrons comment un cup-produit non trivial entre deux blocs de Jordan pour une même valeur propre de la monodromie agissant sur la cohomologie de la fibre de Milnor d’un germe de fonction holomorphe f provoque des pôles d’ordres élevés pour le prolongement méromorphe de | f | 2 z . Pour la valeur propre 1 ceci donne en particulier le phénomène de “contribution sur-effective”.

Cousin-I spaces and domains of holomorphy

Ilie Bârză, Viorel Vâjâitu (2009)

Annales Polonici Mathematici

We prove that a Cousin-I open set D of an irreducible projective surface X is locally Stein at every boundary point which lies in X r e g . In particular, Cousin-I proper open sets of ℙ² are Stein. We also study K-envelopes of holomorphy of K-complete spaces.

Cross theorem

Marek Jarnicki, Peter Pflug (2001)

Annales Polonici Mathematici

Let D,G ⊂ ℂ be domains, let A ⊂ D, B ⊂ G be locally regular sets, and let X:= (D×B)∪(A×G). Assume that A is a Borel set. Let M be a proper analytic subset of an open neighborhood of X. Then there exists a pure 1-dimensional analytic subset M̂ of the envelope of holomorphy X̂ of X such that any function separately holomorphic on X∖M extends to a holomorphic function on X̂ ∖M̂. The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], and [Sic 2000].

Determination of the pluripolar hull of graphs of certain holomorphic functions

Armen Edigarian, Jan Wiegerinck (2004)

Annales de l’institut Fourier

Let A be a closed polar subset of a domain D in . We give a complete description of the pluripolar hull Γ D × * of the graph Γ of a holomorphic function defined on D A . To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.

Currently displaying 61 – 80 of 347