Some remarks concerning holomorphically convex hulls and envelopes of holomorphy.
Dans la première partie, nous étudions la pseudo-convexité dans les elc et montrons que, dans le cas normé comme dans le cas non normé, les diverses notions introduites coïncident. Dans la deuxième partie, nous étudions la convexité polynomiale et prouvons des théorèmes d’approximation du type Runge ou Oka-Weil.
We show that a CR function of class , 0 ≤ k < ∞, on a tube submanifold of holomorphically extends to the convex hull of the submanifold. The extension and all its derivatives through order k are shown to have nontangential pointwise boundary values on the original tube submanifold. The -norm of the extension is shown to be no bigger than the -norm of the original CR function.
We prove that three pairwise disjoint, convex sets can be found, all congruent to a set of the form , such that their union has a non-trivial polynomial convex hull. This shows that not all holomorphic functions on the interior of the union can be approximated by polynomials in the open-closed topology.