Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Structure of leaves and the complex Kupka-Smale property

Tanya Firsova (2013)

Annales de l’institut Fourier

We study topology of leaves of 1 -dimensional singular holomorphic foliations of Stein manifolds. We prove that for a generic foliation all leaves, except for at most countably many, are contractible, the rest are topological cylinders. We show that a generic foliation is complex Kupka-Smale.

Sur la convexité holomorphe. Théorie locale

A. Fabiano, P. Pietramala (1990)

Annales de l'institut Fourier

On définit une notion de convexité géométrique pour des ensembles ouverts de C n . On démontre des résultats de cohomologie locale précisant la topologie du dernier groupe de cohomologie non nul; la cohomologie considérée ici est la cohomologie de Dolbeault pour les formes différentielles.

Sur la pseudo-convexité et la convexité polynomiale en dimension infinie

Philippe Noverraz (1973)

Annales de l'institut Fourier

Dans la première partie, nous étudions la pseudo-convexité dans les elc et montrons que, dans le cas normé comme dans le cas non normé, les diverses notions introduites coïncident. Dans la deuxième partie, nous étudions la convexité polynomiale et prouvons des théorèmes d’approximation du type Runge ou Oka-Weil.

Sur la transformation de Fourier-Laurent dans un groupe analytique complexe réductif

Michel Lassalle (1978)

Annales de l'institut Fourier

Soit H un groupe analytique compact : son complexifié universel G est un groupe analytique complexe réductif. On introduit dans G une classe de “domaines de Reinhardt généralisés”, bi-invariants par H et caractérisés par une “base”, définie dans une sous-algèbre abélienne maximale de l’algèbre de Lie du groupe H et invariante par le groupe de Weyl.On donne une caractérisation par leurs coefficients de Fourier-Laurent des fonctions holomorphes dans un tel domaine. On montre que l’enveloppe d’holomorphie...

Sur les espaces de Stein quasi-compacts en géométrie rigide

Qing Liu (1989)

Journal de théorie des nombres de Bordeaux

On étudie les espaces de Stein quasi-compacts X (i.e. vérifiant H q ( X , ) = 0 pour tout q 1 et tout faisceau cohérent sur X ). On établit un critère simple pour qu’un espace soit de Stein et on en déduit quelques conséquences.

Sur les quotients discrets de semi-groupes complexes

Christian Miebach (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Soit X = G / K un espace symétrique hermitien irréducible de type non-compact et soit S G le semi-groupe associé formé des compressions de X . Soit Γ G un sous-groupe discret. Nous donnons une condition suffisante pour que le quotient Γ S soit une variété de Stein. En outre nous démontrons qu’en général Γ S n’est pas de Stein ce qui réfute une conjecture de Achab, Betten et Krötz.

Survey of Oka theory.

Forstnerič, Franc, Lárusson, Finnur (2011)

The New York Journal of Mathematics [electronic only]

Currently displaying 21 – 38 of 38

Previous Page 2