Eigenvaluations
Let be a complex one-dimensional torus. We prove that all subsets of with finitely many boundary components (none of them being points) embed properly into . We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.
Dans cet article, nous étudions les ensembles d’unicité pour le groupe des automorphismes analytiques d’un domaine borné de (resp. pour l’ensemble des fonctions holomorphes de dans lui-même). Dans les deux cas, nous montrons qu’il existe des ensembles d’unicité contenus dans ; pour , nous montrons que ces ensembles d’unicité forment un ensemble dense de , et pour , que ce n’est pas le cas en général.
Soit un domaine borné strictement pseudoconvexe dans à frontière régulière . On montre que tout compact d’une sous-variété de dont l’espace tangent en chaque point de est contenu dans le sous-espace complexe maximal de est un ensemble pic pour , la classe des fonctions analytiques dans dont toutes les dérivées sont continues dans .
Let be a dominating rational mapping of first algebraic degree . If is a positive closed current of bidegree on with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks converge to the Green current . For some families of mappings, we get finer convergence results which allow us to characterize all -invariant currents.
Let be a non-invertible holomorphic endomorphism of a projective space and its iterate of order . We prove that the pull-back by of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to when tends to infinity. We also give an analogous result for the pull-back of positive closed -currents and a similar result for regular polynomial automorphisms of .
Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space , k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number such that if ϕ: J → ℝ is a Hölder continuous function with , then ϕ admits a unique equilibrium state on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system is K-mixing, whence ergodic. Proving...