Page 1 Next

Displaying 1 – 20 of 32

Showing per page

Eigenvaluations

Charles Favre, Mattias Jonsson (2007)

Annales scientifiques de l'École Normale Supérieure

Embedding subsets of tori Properly into 2

Erlend Fornæss Wold (2007)

Annales de l’institut Fourier

Let 𝕋 be a complex one-dimensional torus. We prove that all subsets of 𝕋 with finitely many boundary components (none of them being points) embed properly into 2 . We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.

Ensembles d'unicité pour les automorphismes et les endomorphismes analytiques d'un domaine borné

Jean-Pierre Vigué (2005)

Annales de l’institut Fourier

Dans cet article, nous étudions les ensembles d’unicité pour le groupe Aut ( D ) des automorphismes analytiques d’un domaine borné D de n (resp. pour l’ensemble H ( D , D ) des fonctions holomorphes de D dans lui-même). Dans les deux cas, nous montrons qu’il existe des ensembles d’unicité contenus dans D n + 1 ; pour Aut ( D ) , nous montrons que ces ensembles d’unicité forment un ensemble dense de D n + 1 , et pour H ( D , D ) , que ce n’est pas le cas en général.

Ensembles pics pour A ( D )

Jacques Chaumat, Anne-Marie Chollet (1979)

Annales de l'institut Fourier

Soit D un domaine borné strictement pseudoconvexe dans C n à frontière régulière D . On montre que tout compact d’une sous-variété N de D dont l’espace tangent T p ( N ) en chaque point p de N est contenu dans le sous-espace complexe maximal de T p ( D ) est un ensemble pic pour A ( D ) , la classe des fonctions analytiques dans D dont toutes les dérivées sont continues dans D .

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.

Equidistribution towards the Green current for holomorphic maps

Tien-Cuong Dinh, Nessim Sibony (2008)

Annales scientifiques de l'École Normale Supérieure

Let f be a non-invertible holomorphic endomorphism of a projective space and f n its iterate of order n . We prove that the pull-back by f n of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to f when n tends to infinity. We also give an analogous result for the pull-back of positive closed ( 1 , 1 ) -currents and a similar result for regular polynomial automorphisms of  k .

Equilibrium measures for holomorphic endomorphisms of complex projective spaces

Mariusz Urbański, Anna Zdunik (2013)

Fundamenta Mathematicae

Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space k , k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number κ f > 0 such that if ϕ: J → ℝ is a Hölder continuous function with s u p ( ϕ ) - i n f ( ϕ ) < κ f , then ϕ admits a unique equilibrium state μ ϕ on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system ( f , μ ϕ ) is K-mixing, whence ergodic. Proving...

Currently displaying 1 – 20 of 32

Page 1 Next