Previous Page 2

Displaying 21 – 30 of 30

Showing per page

On the complex geometry of invariant domains in complexified symmetric spaces

Karl-Hermann Neeb (1999)

Annales de l'institut Fourier

Let M = G / H be a real symmetric space and 𝔤 = 𝔥 + 𝔮 the corresponding decomposition of the Lie algebra. To each open H -invariant domain D 𝔮 i 𝔮 consisting of real ad-diagonalizable elements, we associate a complex manifold Ξ ( D 𝔮 ) which is a curved analog of a tube domain with base D 𝔮 , and we have a natural action of G by holomorphic mappings. We show that Ξ ( D 𝔮 ) is a Stein manifold if and only if D 𝔮 is convex, that the envelope of holomorphy is schlicht and that G -invariant plurisubharmonic functions correspond to convex H -invariant...

On the existence of parabolic actions in convex domains of k + 1

François Berteloot, Ninh Van Thu (2015)

Czechoslovak Mathematical Journal

We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.

On weighted Bergman kernels of bounded domains

Sorin Dragomir (1994)

Studia Mathematica

We build on work by Z. Pasternak-Winiarski [PW2], and study a-Bergman kernels of bounded domains Ω N for admissible weights a L ¹ ( Ω ) .

Optimal destabilizing vectors in some Gauge theoretical moduli problems

Laurent Bruasse (2006)

Annales de l’institut Fourier

We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing 1 -parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal...

Currently displaying 21 – 30 of 30

Previous Page 2