C*-actions.
Page 1
Andrew John Sommese, James B. Carrell (1978)
Mathematica Scandinavica
Edith Socié-Méthou (2002)
Annales scientifiques de l'École Normale Supérieure
Gregor Fels, Alan Huckleberry (2005)
Bulletin de la Société Mathématique de France
A real form of a complex semi-simple Lie group has only finitely many orbits in any given -flag manifold . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains in...
John Erik Fornaess, Nessim Sibony (1995)
Mathematische Annalen
A. Cavalli, G. D'Ariano, L. Michel (1986)
Annales de l'I.H.P. Physique théorique
Camilla Horst (1985)
Mathematische Zeitschrift
Camilla Horst (1987)
Mathematische Zeitschrift
Sai-Kee Yeung (1990)
Inventiones mathematicae
François Lescure (1987)
Mémoires de la Société Mathématique de France
Bernd Stratmann (2001)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Ralf Lehmann (1989)
Annales de l'institut Fourier
A compact complex space is called complex-symmetric with respect to a subgroup of the group , if each point of is isolated fixed point of an involutive automorphism of . It follows that is almost -homogeneous. After some examples we classify normal complex-symmetric varieties with reductive. It turns out that is a product of a Hermitian symmetric space and a compact torus embedding satisfying some additional conditions. In the smooth case these torus embeddings are classified using...
Andrew John Sommese, James B. Carrell (1983)
Mathematica Scandinavica
Page 1