Displaying 121 – 140 of 165

Showing per page

Pluriharmonic functions on symmetric tube domains with BMO boundary values

Ewa Damek, Jacek Dziubański, Andrzej Hulanicki, Jose L. Torrea (2002)

Colloquium Mathematicae

Let 𝓓 be a symmetric Siegel domain of tube type and S be a solvable Lie group acting simply transitively on 𝓓. Assume that L is a real S-invariant second order operator that satisfies Hörmander's condition and annihilates holomorphic functions. Let H be the Laplace-Beltrami operator for the product of upper half planes imbedded in 𝓓. We prove that if F is an L-Poisson integral of a BMO function and HF = 0 then F is pluriharmonic. Some other related results are also considered.

Polynomially growing pluriharmonic functions on Siegel domains

Monika Gilżyńska (2007)

Colloquium Mathematicae

Let 𝓓 be a symmetric type two Siegel domain over the cone of positive definite Hermitian matrices and let N(Φ)S be a solvable Lie group acting simply transitively on 𝓓. We characterize polynomially growing pluriharmonic functions on 𝓓 by means of three N(Φ)S-invariant second order elliptic degenerate operators.

Relative discrete series of line bundles over bounded symmetric domains

Anthony H. Dooley, Bent Ørsted, Genkai Zhang (1996)

Annales de l'institut Fourier

We study the relative discrete series of the L 2 -space of the sections of a line bundle over a bounded symmetric domain. We prove that all the discrete series appear as irreducible submodules of the tensor product of a holomorphic discrete series with a finite dimensional representation.

Reproducing properties and L p -estimates for Bergman projections in Siegel domains of type II

David Békollé, Anatole Temgoua Kagou (1995)

Studia Mathematica

On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted L p -space (0 < p < ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some L p -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space A 2 .

Semi-groupe de Lie associé à un cône symétrique

Khalid Koufany (1995)

Annales de l'institut Fourier

Soit V une algèbre de Jordan simple euclidienne de dimension finie et Ω le cône symétrique associé. Nous étudions dans cet article le semi-groupe Γ , naturellement associé à V , formé des automorphismes holomorphes du domaine tube T Ω : = V + i Ω qui appliquent le cône Ω dans lui-même.

Separately radial and radial Toeplitz operators on the projective space and representation theory

Raul Quiroga-Barranco, Armando Sanchez-Nungaray (2017)

Czechoslovak Mathematical Journal

We consider separately radial (with corresponding group 𝕋 n ) and radial (with corresponding group U ( n ) ) symbols on the projective space n ( ) , as well as the associated Toeplitz operators on the weighted Bergman spaces. It is known that the C * -algebras generated by each family of such Toeplitz operators are commutative (see R. Quiroga-Barranco and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such commutativity. Our method is easier and more enlightening as it shows that the...

Stratonovich-Weyl correspondence for discrete series representations

Benjamin Cahen (2011)

Archivum Mathematicum

Let M = G / K be a Hermitian symmetric space of the noncompact type and let π be a discrete series representation of G holomorphically induced from a unitary character of K . Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple ( G , π , M ) by a suitable modification of the Berezin calculus on M . We extend the corresponding Berezin transform to a class of functions on M which contains the Berezin symbol of d π ( X ) for X in the Lie algebra 𝔤 of G . This allows...

Sur les équations d'Halphen et les actions de SL2(C)

Adolfo Guillot (2007)

Publications Mathématiques de l'IHÉS

On étudie les aspects locaux et globaux des actions holomorphes de SL2(C) sur les variétés complexes de dimension trois, à partir de l’étude des algèbres de Lie de champs de vecteurs qui engendrent une action uniforme. On décrit géométriquement et dynamiquement une famille de telles algèbres étudiée par Halphen vers la fin du XIXème siècle. On donne des formes normales pour les actions de SL2(C) au voisinage des orbites unidimensionnelles. On étudie ensuite les compactifications équivariantes des...

Currently displaying 121 – 140 of 165