Displaying 381 – 400 of 442

Showing per page

The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains

Hyeseon Kim, Atsushi Yamamori (2018)

Czechoslovak Mathematical Journal

We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.

The Hua system on irreducible Hermitian symmetric spaces of nontube type

Dariusz Buraczewski (2004)

Annales de l’institut Fourier

Let G / K be an irreducible Hermitian symmetric space of noncompact type. We study a G - invariant system of differential operators on G / K called the Hua system. It was proved by K. Johnson and A. Korányi that if G / K is a Hermitian symmetric space of tube type, then the space of Poisson-Szegö integrals is precisely the space of zeros of the Hua system. N. Berline and M. Vergne raised the question about the nature of the common solutions of the Hua system for Hermitian symmetric spaces of nontube type. In...

Toeplitz-Berezin quantization and non-commutative differential geometry

Harald Upmeier (1997)

Banach Center Publications

In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.

Currently displaying 381 – 400 of 442