Displaying 21 – 40 of 51

Showing per page

Hölder regularity for solutions to complex Monge-Ampère equations

Mohamad Charabati (2015)

Annales Polonici Mathematici

We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is 1 , 1 and the right hand side has a density in L p ( Ω ) for some p > 1, and prove the Hölder continuity of the solution.

Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor

Henri Guenancia (2014)

Annales de l’institut Fourier

Let X be a compact Kähler manifold and Δ be a -divisor with simple normal crossing support and coefficients between 1 / 2 and 1 . Assuming that K X + Δ is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on X Supp ( Δ ) having mixed Poincaré and cone singularities according to the coefficients of Δ . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair ( X , Δ ) .

Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields

Frédéric Campana, Henri Guenancia, Mihai Păun (2013)

Annales scientifiques de l'École Normale Supérieure

We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields.

Monge-Ampère boundary measures

Urban Cegrell, Berit Kemppe (2009)

Annales Polonici Mathematici

We study swept-out Monge-Ampère measures of plurisubharmonic functions and boundary values related to those measures.

On a Monge-Ampère type equation in the Cegrell class χ

Rafał Czyż (2010)

Annales Polonici Mathematici

Let Ω be a bounded hyperconvex domain in ℂn and let μ be a positive and finite measure which vanishes on all pluripolar subsets of Ω. We prove that for every continuous and strictly increasing function χ:(-∞,0) → (-∞,0) there exists a negative plurisubharmonic function u which solves the Monge-Ampère type equation - χ ( u ) ( d d c u ) = d μ . Under some additional assumption the solution u is uniquely determined.

On subextension and approximation of plurisubharmonic functions with given boundary values

Hichame Amal (2014)

Annales Polonici Mathematici

Our aim in this article is the study of subextension and approximation of plurisubharmonic functions in χ ( Ω , H ) , the class of functions with finite χ-energy and given boundary values. We show that, under certain conditions, one can approximate any function in χ ( Ω , H ) by an increasing sequence of plurisubharmonic functions defined on strictly larger domains.

On the Dirichlet problem in the Cegrell classes

Rafał Czyż, Per Åhag (2004)

Annales Polonici Mathematici

Let μ be a non-negative measure with finite mass given by φ ( d d c ψ ) , where ψ is a bounded plurisubharmonic function with zero boundary values and φ L q ( ( d d c ψ ) ) , φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.

On the product property for the transfinite diameter

Zbigniew Błocki, Armen Edigarian, Józef Siciak (2011)

Annales Polonici Mathematici

We give a pluripotential-theoretic proof of the product property for the transfinite diameter originally shown by Bloom and Calvi. The main tool is the Rumely formula expressing the transfinite diameter in terms of the global extremal function.

Plurifine potential theory

Jan Wiegerinck (2012)

Annales Polonici Mathematici

We give an overview of the recent developments in plurifine pluripotential theory, i.e. the theory of plurifinely plurisubharmonic functions.

Pluriharmonic extension in proper image domains

Rafał Czyż (2009)

Annales Polonici Mathematici

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s ≥ 3. Also let Ω π be the image of D under the proper holomorphic map π. We characterize those continuous functions f : Ω π that can be extended to a real-valued pluriharmonic function in Ω π .

Polynomial interpolation and approximation in d

T. Bloom, L. P. Bos, J.-P. Calvi, N. Levenberg (2012)

Annales Polonici Mathematici

We update the state of the subject approximately 20 years after the publication of T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic functions in ℂ and ℂⁿ, Rocky Mountain J. Math. 22 (1992), 441-470. This report is mostly a survey, with a sprinkling of assorted new results throughout.

Product property for capacities in N

Mirosław Baran, Leokadia Bialas-Ciez (2012)

Annales Polonici Mathematici

The paper deals with logarithmic capacities, an important tool in pluripotential theory. We show that a class of capacities, which contains the L-capacity, has the following product property: C ν ( E × E ) = m i n ( C ν ( E ) , C ν ( E ) ) , where E j and ν j are respectively a compact set and a norm in N j (j = 1,2), and ν is a norm in N + N , ν = ν₁⊕ₚ ν₂ with some 1 ≤ p ≤ ∞. For a convex subset E of N , denote by C(E) the standard L-capacity and by ω E the minimal width of E, that is, the minimal Euclidean distance between two supporting hyperplanes in...

Regularity of certain sets in ℂⁿ

Nguyen Quang Dieu (2003)

Annales Polonici Mathematici

A subset K of ℂⁿ is said to be regular in the sense of pluripotential theory if the pluricomplex Green function (or Siciak extremal function) V K is continuous in ℂⁿ. We show that K is regular if the intersections of K with sufficiently many complex lines are regular (as subsets of ℂ). A complete characterization of regularity for Reinhardt sets is also given.

Some characterizations of the class m ( Ω ) and applications

Hai Mau Le, Hong Xuan Nguyen, Hung Viet Vu (2015)

Annales Polonici Mathematici

We give some characterizations of the class m ( Ω ) and use them to establish a lower estimate for the log canonical threshold of plurisubharmonic functions in this class.

Stochastic characterization of plurisubharmonicity and convexity of functions

Maciej Klimek (2015)

Banach Center Publications

It is described how both plurisubharmonicity and convexity of functions can be characterized in terms of simple to work with classes of holomorphic martingales, namely a class of driftless Itô processes satisfying a skew-symmetry property and a family of linear modifications of Brownian motion parametrized by a compact set.

Strong bifurcation loci of full Hausdorff dimension

Thomas Gauthier (2012)

Annales scientifiques de l'École Normale Supérieure

In the moduli space d of degree  d rational maps, the bifurcation locus is the support of a closed ( 1 , 1 ) positive current T bif which is called the bifurcation current. This current gives rise to a measure μ bif : = ( T bif ) 2 d - 2 whose support is the seat of strong bifurcations. Our main result says that supp ( μ bif ) has maximal Hausdorff dimension 2 ( 2 d - 2 ) . As a consequence, the set of degree  d rational maps having ( 2 d - 2 ) distinct neutral cycles is dense in a set of full Hausdorff dimension.

Currently displaying 21 – 40 of 51