Previous Page 3

Displaying 41 – 51 of 51

Showing per page

Subextension of plurisubharmonic functions without changing the Monge-Ampère measures and applications

Le Mau Hai, Nguyen Xuan Hong (2014)

Annales Polonici Mathematici

The aim of the paper is to investigate subextensions with boundary values of certain plurisubharmonic functions without changing the Monge-Ampère measures. From the results obtained, we deduce that if a given sequence is convergent in C n - 1 -capacity then the sequence of the Monge-Ampère measures of subextensions is weakly*-convergent. As an application, we investigate the Dirichlet problem for a nonnegative measure μ in the class ℱ(Ω,g) without the assumption that μ vanishes on all pluripolar sets.

Tameness in Fréchet spaces of analytic functions

Aydın Aytuna (2016)

Studia Mathematica

A Fréchet space with a sequence | | · | | k k = 1 of generating seminorms is called tame if there exists an increasing function σ: ℕ → ℕ such that for every continuous linear operator T from into itself, there exist N₀ and C > 0 such that | | T ( x ) | | C | | x | | σ ( n ) ∀x ∈ , n ≥ N₀. This property does not depend upon the choice of the fundamental system of seminorms for and is a property of the Fréchet space . In this paper we investigate tameness in the Fréchet spaces (M) of analytic functions on Stein manifolds M equipped with the compact-open...

The complex Monge-Ampère equation for complex homogeneous functions in ℂⁿ

Rafał Czyż (2001)

Annales Polonici Mathematici

We prove some existence results for the complex Monge-Ampère equation ( d d c u ) = g d λ in ℂⁿ in a certain class of homogeneous functions in ℂⁿ, i.e. we show that for some nonnegative complex homogeneous functions g there exists a plurisubharmonic complex homogeneous solution u of the complex Monge-Ampère equation.

The general definition of the complex Monge-Ampère operator

Urban Cegrell (2004)

Annales de l’institut Fourier

We define and study the domain of definition for the complex Monge-Ampère operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.

The gradient lemma

Urban Cegrell (2007)

Annales Polonici Mathematici

We show that if a decreasing sequence of subharmonic functions converges to a function in W l o c 1 , 2 then the convergence is in W l o c 1 , 2 .

The image of a finely holomorphic map is pluripolar

Armen Edigarian, Said El Marzguioui, Jan Wiegerinck (2010)

Annales Polonici Mathematici

We prove that the image of a finely holomorphic map on a fine domain in ℂ is a pluripolar subset of ℂⁿ. We also discuss the relationship between pluripolar hulls and finely holomorphic functions.

The transfinite diameter of the real ball and simplex

T. Bloom, L. Bos, N. Levenberg (2012)

Annales Polonici Mathematici

We calculate the transfinite diameter for the real unit ball B d : = x d : | x | 1 and the real unit simplex T d : = x + d : j = 1 d x j 1 .

Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques

O. Alehyane, A. Zeriahi (2001)

Annales Polonici Mathematici

This paper is concerned with the problem of extension of separately holomorphic mappings defined on a "generalized cross" of a product of complex analytic spaces with values in a complex analytic space. The crosses considered here are inscribed in Borel rectangles (of a product of two complex analytic spaces) which are not necessarily open but are non-pluripolar and can be quite small from the topological point of view. Our first main result says that the singular...

Currently displaying 41 – 51 of 51

Previous Page 3