Previous Page 2

Displaying 21 – 32 of 32

Showing per page

Prolongement d’un courant positif quasi-plurisurharmonique

Noureddine Ghiloufi, Khalifa Dabbek (2009)

Annales mathématiques Blaise Pascal

Le but de cet article est de montrer un résultat de prolongement d’un courant positif, défini en dehors d’un obstacle fermé, dont le d d c est dominé par un courant positif fermé de masse localement finie. On étudie divers types d’obstacles  : soit un ensemble fermé pluripolaire complet, soit l’ensemble des zéros d’une fonction strictement k -convexe positive. Dans la troisième partie, sous des conditions sur la dimension de Hausdorff de l’obstacle, on démontre le prolongement d’un tel courant. On termine...

Pull-back of currents by meromorphic maps

Tuyen Trung Truong (2013)

Bulletin de la Société Mathématique de France

Let  X and Y be compact Kähler manifolds, and let  f : X Y be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator f for currents of bidegrees ( p , p ) of finite order on  Y (and thus foranycurrent, since Y is compact). This operator has good properties as may be expected. Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can...

Some characterizations of the class m ( Ω ) and applications

Hai Mau Le, Hong Xuan Nguyen, Hung Viet Vu (2015)

Annales Polonici Mathematici

We give some characterizations of the class m ( Ω ) and use them to establish a lower estimate for the log canonical threshold of plurisubharmonic functions in this class.

Sur l'intersection des courants laminaires.

Romain Dujardin (2004)

Publicacions Matemàtiques

We try to find a geometric interpretation of the wedge product of positive closed laminar currents in C2. We say such a wedge product is geometric if it is given by intersecting the disks filling up the currents. Uniformly laminar currents do always intersect geometrically in this sense. We also introduce a class of strongly approximable laminar currents, natural from the dynamical point of view, and prove that such currents intersect geometrically provided they have continuous potentials.

The supports of higher bifurcation currents

Romain Dujardin (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Let ( f λ ) λ Λ be a holomorphic family of rational mappings of degree d on 1 ( ) , with k marked critical points c 1 , ... , c k . To this data is associated a closed positive current T 1 T k of bidegree ( k , k ) on Λ , aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which c 1 , ... , c k eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of Supp ( T 1 T k ) .

Un théorème de Bloch presque complexe

Benoît Saleur (2014)

Annales de l’institut Fourier

Cet article est consacré à la démonstration d’une version presque complexe du théorème de Bloch. Considérons la réunion C de quatre J-droites en position générale dans un plan projectif presque complexe. Nous démontrons que toute suite non normale de J-disques évitant évitant la configuration C admet une sous-suite convergeant, au sens de Hausdorff, vers une partie la réunion des diagonales de C. En particulier, le complémentaire de la configuration C est hyperboliquement plongé dans le paln projectif...

Une caractérisation géométrique des exemples de Lattès de k

François Berteloot, Jean-Jacques Loeb (2001)

Bulletin de la Société Mathématique de France

Un exemple de Lattès est un endomorphisme holomorphe de l’espace projectif complexe qui se relève en une dilatation de l’espace affine de même dimension au moyen d’un revêtement ramifié sur les fibres duquel un groupe cristallographique agit transitivement. Nous montrons que tout endomorphisme holomorphe d’un espace projectif complexe dont le courant de Green est lisse et strictement positif sur un ouvert non vide est nécessairement un exemple de Lattès.

Uniqueness and factorization of Coleff-Herrera currents

Mats Andersson (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove a uniqueness result for Coleff-Herrera currents which in particular means that if f = ( f 1 , ... , f m ) defines a complete intersection, then the classical Coleff-Herrera product associated to f is the unique Coleff-Herrera current that is cohomologous to 1 with respect to the operator δ f - ¯ , where δ f is interior multiplication with f . From the uniqueness result we deduce that any Coleff-Herrera current on a variety Z is a finite sum of products of residue currents with support on Z and holomorphic forms.

Uniqueness of equivariant singular Bott-Chern classes

Shun Tang (2012)

Annales de l’institut Fourier

In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion...

Currently displaying 21 – 32 of 32

Previous Page 2