Loading [MathJax]/extensions/MathZoom.js
Displaying 181 –
200 of
338
Our aim in this article is the study of subextension and approximation of plurisubharmonic functions in , the class of functions with finite χ-energy and given boundary values. We show that, under certain conditions, one can approximate any function in by an increasing sequence of plurisubharmonic functions defined on strictly larger domains.
We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.
Let P be a real-valued and weighted homogeneous plurisubharmonic polynomial in and let D denote the “model domain” z ∈ ℂⁿ | r(z):= Re z₁ + P(z’) < 0. We prove a lower estimate on the Bergman distance of D if P is assumed to be strongly plurisubharmonic away from the coordinate axes.
Let μ be a non-negative measure with finite mass given by , where ψ is a bounded plurisubharmonic function with zero boundary values and , φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.
We study the behavior of the pluricomplex Green function on a bounded hyperconvex domain D that admits a smooth plurisubharmonic exhaustion function ψ such that 1/|ψ| is integrable near the boundary of D, and moreover satisfies the estimate at points close enough to the boundary with constants C,C’ > 0 and 0 < α < 1. Furthermore, we obtain a Hopf lemma for such a function ψ. Finally, we prove a lower bound on the Bergman distance on D.
We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.
We give a pluripotential-theoretic proof of the product property for the transfinite diameter originally shown by Bloom and Calvi. The main tool is the Rumely formula expressing the transfinite diameter in terms of the global extremal function.
It is proved that any subharmonic function in a domain Ω ⊂ ℂⁿ which is plurisubharmonic outside of a real hypersurface of class C¹ is indeed plurisubharmonic in Ω.
We consider the following problem: find on a plurisubharmonic function with a given order function. In particular, we prove that any positive ambiguous function on which is constant outside a polar set is the order function of a plurisubharmonic function.
The local Phragmén-Lindelöf condition for analytic varieties in complex n-space was introduced by Hörmander and plays an important role in various areas of analysis. Recently, new necessary geometric properties for a variety satisfying this condition were derived by the present authors. These results are now applied to investigate the homogeneous polynomials P with real coefficients that are stable in the following sense: Whenever f is a holomorphic function that is defined in some neighborhood...
We give an overview of the recent developments in plurifine pluripotential theory, i.e. the theory of plurifinely plurisubharmonic functions.
Let be a bounded hyperconvex domain in and set , j=1,...,s, s ≥ 3. Also let be the image of D under the proper holomorphic map π. We characterize those continuous functions that can be extended to a real-valued pluriharmonic function in .
Currently displaying 181 –
200 of
338