Concerning the energy class for 0 < p < 1
The energy class is studied for 0 < p < 1. A characterization of certain bounded plurisubharmonic functions in terms of and its pluricomplex p-energy is proved.
The energy class is studied for 0 < p < 1. A characterization of certain bounded plurisubharmonic functions in terms of and its pluricomplex p-energy is proved.
We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity of functions in some case. As applications we give certain stability theorems...
We prove that if in Cₙ-capacity then . This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.
We study restrictions of ω-plurisubharmonic functions to a smooth hypersurface S in a compact Kähler manifold X. The result obtained and the characterization of convergence in capacity due to S. Dinew and P. H. Hiep [to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci.] are used to study convergence in capacity on S.
Si illustrano alcuni sviluppi della teoria delle foliazioni di Monge-Ampère e delle sue applicazioni alla classificazione delle varietà complesse non compatte.
We prove that any positive function on ℂℙ¹ which is constant outside a countable -set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.
We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure is moderate if is Hölder continuous. We prove a theorem which is a partial converse to this result.
Let be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on with right hand side, . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range of the complex Monge-Ampère operator acting on -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with -density belong to and proving that has the...
We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is and the right hand side has a density in for some p > 1, and prove the Hölder continuity of the solution.
In this paper we prove the existence of solutions of a degenerate complex Monge-Ampére equation on a complex manifold. Applying our existence result to a special degeneration of complex structure, we show how to associate to a change of complex structure an infinite length geodetic ray in the space of potentials. We also prove an existence result for the initial value problem for geodesics. We end this paper with a discussion of a list of open problems indicating how to relate our reults to the...
Let be a compact Kähler manifold and be a -divisor with simple normal crossing support and coefficients between and . Assuming that is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on having mixed Poincaré and cone singularities according to the coefficients of . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair .
We announce some results concerning the Dirichlet problem for the Levi-equation in . We consider for the sake of simplicity the case .