The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 261 – 280 of 897

Showing per page

Solvability of a higher-order multi-point boundary value problem at resonance

Xiaojie Lin, Qin Zhang, Zengji Du (2011)

Applications of Mathematics

Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance x ( n ) ( t ) = f ( t , x ( t ) , x ' ( t ) , , x ( n - 1 ) ( t ) ) , t ( 0 , 1 ) , x ( 0 ) = i = 1 m α i x ( ξ i ) , x ' ( 0 ) = = x ( n - 2 ) ( 0 ) = 0 , x ( n - 1 ) ( 1 ) = j = 1 l β j x ( n - 1 ) ( η j ) , where f : [ 0 , 1 ] × n is a Carathéodory function, 0 < ξ 1 < ξ 2 < < ξ m < 1 , α i , i = 1 , 2 , , m , m 2 and 0 < η 1 < < η l < 1 , β j , j = 1 , , l , l 1 . In this paper, two of the boundary value conditions are responsible for resonance.

Solvability of an Infinite System of Singular Integral Equations

El Borai, Mahmoud M., Abbas, Mohamed I. (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.Schauder's fixed point theorem is used to establish an existence result for an infinite system of singular integral equations in the form: (1) xi(t) = ai(t)+ ∫t0 (t − s)− α (s, x1(s), x2(s), …) ds, where i = 1,2,…, α ∈ (0,1) and t ∈ I = [0,T]. The result obtained is applied to show the solvability of an infinite system of differential equation of fractional orders.

Currently displaying 261 – 280 of 897