On differential independence of the Riemann zeta function and the Euler gamma function
We consider the existence of extremal solutions to second order discontinuous implicit ordinary differential equations with discontinuous implicit boundary conditions in ordered Banach spaces. We also study the dependence of these solutions on the data, and cases when the extremal solutions are obtained as limits of successive approximations. Examples are given to demonstrate the applicability of the method developed in this paper.
We study conditions of discreteness of spectrum of the functional-differential operator on . In the absence of the integral term this operator is a one-dimensional Schrödinger operator. In this paper we consider a symmetric operator with real spectrum. Conditions of discreteness are obtained in terms of the first eigenvalue of a truncated operator. We also obtain one simple condition for discreteness of spectrum.
The lower bounds of the spacings b-a or a’-a of two consecutive zeros or three consecutive zeros of solutions of third order differential equations of the form y”’ + q(t)y’ + p(t)y = 0 (*) are derived under very general assumptions on p and q. These results are then used to show that or as n → ∞ under suitable assumptions on p and q, where ⟨tₙ⟩ is a sequence of zeros of an oscillatory solution of (*). The Opial-type inequalities are used to derive lower bounds of the spacings d-a or b-d for...
Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.
We study the connection between the entropy of a dynamical system and the boundary distortion rate of regions in the phase space of the system.
In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differential equations, the coefficients and the boundary values of which are constant intervals. To solve this kind of interval BVP, we implement an approach that differs from commonly used ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs. The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval BVP. Therefore, the novelty of the...