Theory of linear abstract functional differential equations and applications.
In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note...
By using the well-known Leggett–Williams multiple fixed point theorem for cones, some new criteria are established for the existence of three positive periodic solutions for a class of n-dimensional functional differential equations with impulses of the form ⎧y’(t) = A(t)y(t) + g(t,yt), , j ∈ ℤ, ⎨ ⎩, where is a nonsingular matrix with continuous real-valued entries.
Applying a nonsmooth version of a three critical points theorem of Ricceri, we prove the existence of three periodic solutions for an ordinary differential inclusion depending on two parameters.
In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.