On projective equivalence of univariate polynomial subspaces.
In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the -th order delay differential equations Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases and are discussed.
This paper is divided in two parts. In the first part we study a convergent -analog of the divergent Euler series, with , and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding -difference equation. In the second part, we work under the assumption . In this case, at least four different -Borel sums of a divergent power series solution of an irregular singular...
This work is devoted to the study of a Cauchy problem for a certain family of q-difference-differential equations having Fuchsian and irregular singularities. For given formal initial conditions, we first prove the existence of a unique formal power series X̂(t,z) solving the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the Cauchy problem whose q-asymptotic expansion...
Integral criteria are established for and , where is the space of solutions of the equation satisfying the condition
We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.