Addendum to "On Meromorphic Solutions of Algebraic Differential Equations".
The asymptotic behaviour of a Sturm-Liouville differential equation with coefficient is investigated, where and is a nondecreasing step function tending to as . Let denote the set of those ’s for which the corresponding differential equation has a solution not tending to 0. It is proved that is an additive group. Four examples are given with , , (i.e. the set of dyadic numbers), and .
We consider the equation where and () are positive continuous functions for all and . By a solution of the equation we mean any function , continuously differentiable everywhere in , which satisfies the equation for all . We show that under certain additional conditions on the functions and , the above equation has a unique solution , satisfying the inequality where the constant does not depend on the choice of .
We prove the existence of integral (stable, unstable, center) manifolds of admissible classes for the solutions to the semilinear integral equation when the evolution family has an exponential trichotomy on a half-line or on the whole line, and the nonlinear forcing term f satisfies the (local or global) φ-Lipschitz conditions, i.e., ||f(t,x)-f(t,y)|| ≤ φ(t)||x-y|| where φ(t) belongs to some classes of admissible function spaces. These manifolds are formed by trajectories of the solutions belonging...