Displaying 601 – 620 of 1233

Showing per page

Additive groups connected with asymptotic stability of some differential equations

Árpád Elbert (1998)

Archivum Mathematicum

The asymptotic behaviour of a Sturm-Liouville differential equation with coefficient λ 2 q ( s ) , s [ s 0 , ) is investigated, where λ and q ( s ) is a nondecreasing step function tending to as s . Let S denote the set of those λ ’s for which the corresponding differential equation has a solution not tending to 0. It is proved that S is an additive group. Four examples are given with S = { 0 } , S = , S = 𝔻 (i.e. the set of dyadic numbers), and S .

Admissible spaces for a first order differential equation with delayed argument

Nina A. Chernyavskaya, Lela S. Dorel, Leonid A. Shuster (2019)

Czechoslovak Mathematical Journal

We consider the equation - y ' ( x ) + q ( x ) y ( x - ϕ ( x ) ) = f ( x ) , x , where ϕ and q ( q 1 ) are positive continuous functions for all x and f C ( ) . By a solution of the equation we mean any function y , continuously differentiable everywhere in , which satisfies the equation for all x . We show that under certain additional conditions on the functions ϕ and q , the above equation has a unique solution y , satisfying the inequality y ' C ( ) + q y C ( ) c f C ( ) , where the constant c ( 0 , ) does not depend on the choice of f .

Currently displaying 601 – 620 of 1233