Advances in UAS for functional differential equations.
The affine invariant partition of the set of quadratic systems with one finite singular point of the 4th multiplicity with respect to different topological classes is accomplished. The conditions corresponding to this partition are semi-algebraic, i.e. they are expressed as equalities or inequalities between polynomials.
In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.
In this paper we consider the system of Hamiltonian differential equations, which determines small oscillations of a dynamical system with n parameters. We demonstrate that this system determines an affinor structure J on the phase space TRⁿ. If J² = ωI, where ω = ±1,0, the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type. In the Euclidean case (Rⁿ = Eⁿ) we obtain the Hopf bundle and its analogs. The bases of these bundles are, respectively, the projective...
This paper deals with integrability issues of the Euler-Lagrange equations associated to a variational problem, where the energy function depends on acceleration and drag. Although the motivation came from applications to path planning of underwater robot manipulators, the approach is rather theoretical and the main difficulties result from the fact that the power needed to push an object through a fluid increases as the cube of its speed.
By means of the reduction of boundary value problems to algebraic ones, conditions for the existence of solutions and explicit expressions of them are obtained. These boundary value problems are related to the second order operator differential equation X(2) + A1X(1) + A0X = 0, and X(1) = A + BX + XC. For the finite-dimensional case, computable expressions of the solutions are given.
In this paper we give a summary of joint work with Alexa van der Waall concerning Lamé equations having finite monodromy. This research is the subject of van der Waall's Ph. D. thesis [W].