On a Theorem of Gundersen and Laine.
A relatively simple proof is given for Haimo's theorem that a meromorphic function with suitably controlled Schwarzian derivative is a concave mapping. More easily verified conditions are found to imply Haimo's criterion, which is now shown to be sharp. It is proved that Haimo's functions map the unit disk onto the outside of an asymptotically conformal Jordan curve, thus ruling out the presence of corners.
We prove that the initial value problem x’(t) = f(t,x(t)), is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.
On an infinite-dimensional Hilbert space, we establish the existence of solutions for some evolution problems associated with time-dependent subdifferential operators whose perturbations are Carathéodory single-valued maps.
Two point boundary value problem for the linear system of ordinary differential equations with deviating arguments is considered. For this problem the sufficient condition for existence and uniqueness of solution is obtained. The same approach as in [2], [3] is applied.
Formulating the two-body problem of classical relativistic electrodynamics in terms of action at a distance and using retarded potential, the equations of one-dimensional motion are functional differential equations of the retarded type. For this kind of equations, in general it is not enough to specify instantaneous data to specify unique trajectories. Nevertheless, Driver (1969) has shown that under special conditions for these electrodynamic equations, there exists an unique solution for this...
The problem on the existence of a positive in the interval solution of the boundary value problem is considered, where the functions and satisfy the local Carathéodory conditions. The possibility for the functions and to have singularities in the first argument (for and ) and in the phase variable (for ) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.
The aim of this paper is to give the proofs of those results that in [4] were only announced, and, at the same time, to propose some possible developments, indicating some of the most significant open problems.